
filuxe

Jan 12, 2022

Contents:

1 A quick spin 1
1.1 LAN Webserver . 2
1.2 WAN Server . 2
1.3 LAN Forwarder . 2
1.4 Buildserver . 3

2 Filuxe script 5

3 Forwarder 7
3.1 Config . 8
3.2 Rules . 8

4 Web server 11
4.1 Write access . 11
4.2 Authentication . 11
4.3 Tips and tricks . 12

5 Web server direct HTTP 13
5.1 Upload file . 13
5.2 Get list of files . 13
5.3 Download file . 14

6 Keys and certificates 15

7 Filebrowser 17

8 Installing 19
8.1 Dependencies . 19
8.2 Reading . 19
8.3 Credits . 19

9 Deployment 21
9.1 LAN Webserver . 21
9.2 WAN Webserver . 21
9.3 Certificates . 21
9.4 Others . 22

10 Filuxe 23

i

ii

CHAPTER 1

A quick spin

The quick spin here consists of starting a webserver and a forwarder application on the ‘LAN’ and a webserver on a
‘WAN’ where both servers are in fact just running in parallel on the same local PC.

Finally files are uploaded via HTTP from the fictive buildserver to the LAN webserver with the filuxe script, after
which the forwarder will hopefully automatically forward the file from the LAN to the WAN webserver filestorage.

Before starting then make local copies of the three configuration files config_lan, config_wan and con-
fig_forwarder.json.template where the .template extension is stripped. Finally make a local copy of the file
rules.json.template as well.

Also have a look at installing to get the dependencies installed.

Other ways to get filuxe fired up is to run the livetest.py script which starts a filuxe system from scratch in order to run
a few testcases and the test_servers.py script that starts a filuxe system (in ./test) and leave it running for testing and

1

filuxe

experimenting.

1.1 LAN Webserver

As the very first thing the LAN server needs a filestorage to work on. Since the default in the configuration file is
/opt/filestorage_lan then make this directory and make it accessible for the user:

mkdir -p /opt/filestorage_lan
chown user:group /opt/filestorage_lan

Now start the LAN webserver. Its not actually needed unless you would like to work with the LAN filestorage over
HTTP but for the sake of this quick walk through that is precisely what you will like to do further below.:

./filuxe_server.py --config config_lan.json

Verify that it lists the filestorage root as /opt/filestorage_lan.

1.2 WAN Server

Obviously the WAN web server will run on an internet connected server somewhere but here it is just started alongside
everything else on the local PC. The web server application itself is the same for both LAN and WAN server.

Since the WAN server will use HTTPS then make a certificates directory and generate the needed SSL keys with a
openssh oneliner.

Next make a WAN filestorage as /opt/filestorage_wan like it was done for the LAN web server filestorage and then
start the server:

./filuxe_server.py --config config_wan.json

Now verify that this server uses the filestorage root /opt/filestorage_wan.

1.3 LAN Forwarder

The forwarder application will, based on a rules setup, forward files from the LAN filestorage to the WAN webserver
via http (in real life through the company firewall). It needs to know how to forward in the form of a json configuration
file. It is default assumed to be named rules.json so make a very rudimentary rules.json with the following content:

{
"default": {

"export": true,
"delete": true

},
"dirs": {

"test": {
"include": "zip"

}
}

}

Next the forwarder is started. It has its own configuration file bridging the two worlds of LAN and WAN, defining the
local LAN filestorage root and the address of the remote WAN web server (which is started further down):

2 Chapter 1. A quick spin

filuxe

./filuxe_forwarder.py --config config_forwarder.json --debug

Verify that it has started scanning /opt/filestorage_lan and intends to communicate with a “internet” server at local-
host:9000.

1.4 Buildserver

With the applications running on the LAN and WAN webservers the backbone of Filuxer is now up and running. What
is left is to add and remove files from the LAN webserver filestorage and check if the WAN webserver succeeds as a
mirror. Given that everything runs on the same PC there is direct access to the LAN web server filestorage and a quick
check is in order to verify that Filuxe is operational::

touch /opt/filestorage_lan/direct.zip

Check that it got mirrored::

ls /opt/filestorage_wan/
direct.zip

It were! Now delete the file /opt/filestorage_lan/direct.zip again and watch that the file dissapears from
/opt/filestorage_wan/. So far so good.

The problem is that real life buildserver(s) (or whatever the producers are) might have no direct access to the filestorage
on the LAN server filesystem. They should instead use the script filuxe.py which is a utility for managing the LAN
filestorage via HTTP inside the LAN.

Make a dummy test file:

touch test.zap

Now anyone on the LAN can add and remove files with the filuxe script. Notice that the source filename and the
destination filename are both given as separate entries. Depending on context this can be either handy or rather daft.:

./filuxe.py --config config_lan.json --upload --file test.zap --path test/test.zap

The servers will automatically construct missing subdirectories found in the –path argument if they don’t exist.

Also notice that it didn’t actually work. The file appeared in the LAN filestorage but it didn’t show up on the WAN
server. This is due to the rules.json made earlier, it specifically stated that only zip files should be forwarded from
the ‘test’ directory. So rename the zap to zip and run the filuxe line above once more. Rather than checking in
/opt/filestorage_wan then use filuxe to view the WAN filestorage (notice the new config file, now one that points to the
WAN server is needed)::

./filuxe.py --config config_wan.json --list --pretty --path test

Which gives:

{
"filelist": {

"test": {
"test.zip": {

"size": 0,
"time": 1591819292.2268672

}
}

(continues on next page)

1.4. Buildserver 3

filuxe

(continued from previous page)

},
"info": {

"dirs": 1,
"fileroot": "/opt/filestorage_wan/",
"files": 1

}
}

The net result of the whole exercise to this point is that the file was ultimately saved on the WAN fileserver. Whats left
is now that some products or endusers will download files as they see fit. How they do that is not considered part of
the filuxe project.

4 Chapter 1. A quick spin

CHAPTER 2

Filuxe script

The filuxe.py script can be used for accessing the LAN and WAN filestorages over HTTP(S). It follows the filuxe
philosophy of going all in on HTTP filetransfers via python scripts. Do however keep in mind that what it does is
to work on a filestructure on a local server which probably sounds familiar, and that it does so without any builtin
security. So if corporate access control is required then SMB or NFS mounts does pretty much the same, but with
proper access control.

filuxe.py can be used to upload, download and delete files on either filestorage and it can be used to get a list of files
on either as well. filuxe.py is only envisioned to be used on the LAN, the expectation is that accesses to the WAN
filestorage by e.g. products will be done with a plain wget rather than with the filuxe python script. That might
however be a flawed expectation.

It will as any other filuxe script need a configuration file. It will have a preference for accessing the LAN filestorage
so if it can find a “lan_host” and a “lan_port” entry then this is what it will be using. If LAN entries are not present it
will load the wan server address instead. Typically it can therefore be launched with the LAN server config directly or
a copy of the forwarder config where the LAN references are deleted forcing it to fall back to WAN access.

The filuxe.py script is just a thin facade on top of the filuxe core script which filuxe.py uses together with the forwarder
script for working with HTTP filetransfers.

5

filuxe

6 Chapter 2. Filuxe script

CHAPTER 3

Forwarder

Note: The forwarder has a file count limiter where it starts to delete files in a filestorage according to a “max_files”
setting. Never enable this in the rules file described below if there are file storages with production files that may not
be lost. There are countless ways this could happen, a forwarder gone south, the documentation on this page beeing
wrong or outdated or perhaps just regex rules that did’t quite work out as expected. Thread with care.

The forwarder is intended to run on the LAN server where it monitors the LAN filestorage for changes and updates
the WAN webserver accordingly by e.g. uploading or deleting files over HTTP(S). It operates based on a rules file
defining which kind of files to forward from the LAN to the WAN server and as mentioned above, it can enforce a
maximum number of files in a given directory. The use case is a build system which can now upload artifacts from
high speed development branches/assets without worrying (too much) about disks running full with obsolete artifacts.

Since the forwarder might be useful as just a file count limiter it can run on a LAN server even though there is no
remote WAN server specified (meaning that it will never actually forward anything) and it can just as well run on a
WAN server by telling it to use the WAN filestorage as the ‘LAN filestorage’.

The forwarder arguments:

./filuxe_forwarder.py -h
usage: filuxe_forwarder [-h] [--config CONFIG] [--rules RULES] [--templaterule] [--
→˓dryrun] [--verbose] [--info]

optional arguments:
-h, --help show this help message and exit
--config CONFIG configuration file, default config_forwarder.json
--rules RULES rules json file. Default is an empty rule set forwarding everything
--templaterule make an example rules.json file
--dryrun don't actually delete files
--verbose enable verbose messages
--info enable informational messages

7

filuxe

3.1 Config

The forwarder requires a configuration file telling it where to find the servers. It can be regarded as containing the
parts from the LAN and WAN server configuration files that the forwarder should use.

If the forwarder should run on a server for just using its file count limiter, its configuration could look like

{
"lan_filestorage": "test/filestorage_lan",
"lan_host": "localhost",
"lan_port": 8000

}

Since there is no wan settings present the actual forwarding is disabled and this forwarder will only be useful as file
count limiter given it has a matching rules configuration (next chapter). Since this is most likely the same configuration
as the LAN server is using the forwarder can simply be given the LAN server configuration.

The typical forwarder configuration with forwarding from a LAN to a WAN will look something like:

{
"lan_filestorage": "test/filestorage_lan",
"lan_host": "localhost",
"lan_port": 8000,
"wan_host": "localhost",
"wan_port": 9000,
"wan_certificate": "test/certificates/cert.pem.devel",
"certificates": [

"test/certificates/cert.pem.devel",
"test/certificates/key.pem.devel"

],
"write_key": "devel"

}

Since there are a certificate entry for the WAN server this will be contacted via https where the LAN server by the
same logic will use plain http. This configuration is then the merge of the configuration files used for both the LAN
and the WAN servers.

There are some forwarder configuration example files used by the live test in config/fwd.

3.2 Rules

The rules file is needed only if forwarding should be changed from the default ‘just forward everything as is’ and/or
the file deleter should be activated with ‘max_files’ different from the default implicit value of ‘unlimited’.

The rules file is in json and consist of a default section and a list of directories needing special settings. Both entries are
optional and the rules file itself is optional as well. The default behavior of the forwarder is that all files are forwarded
and that there are no limit for the number of files.

A rules file could look like this:

{
"default": {

"include": [".*\\.zip"],
"max_files": 2

},
"dirs": {

(continues on next page)

8 Chapter 3. Forwarder

filuxe

(continued from previous page)

"first": {
"max_files": 1,
"exclude": ["unversioned_..zip"],
"version": ".*?:(\\d+.\\d+.\\d+):.*?",
"group": ["(.*?)\\:\\d+\\.\\d+\\.\\d+\\:(.*)"],
"delete_by": "version"

},
"second": {

"include": [".*"],
"max_files": "unlimited"

},
"second/second": {

"max_files": 2
}

}
}

Take care. In the rule set above e.g. the ‘max_files’ equal 2 in the default section will be the default for all directories
found recursively which might lead to a lot of unintended file deletions. Use the –dryrun argument on the forwarder
in order to spot any unexpected behaviour, with –dryrun no files will actually be deleted.

Forwarder rules files used by the live test can be found in config/rules and the example above is
live_test_forwarder_as_deleter.json. A matching testset with files and that exercises these rules can be found in test-
data/filestorage_lan.

Note that the default section is the same as the rule for the root directory meaning that settings here will be default
inherited for all directories in the entire directory tree. Rules for a given directory is the rules inherited from the parent
directory with any explicit rules in a given directory -rewriting- the rules inherited from the parent.

Default rules:

“export”: true Setting “export” to false makes it possible to exempt a directory from forwarding from LAN to WAN.

“delete”: false Setting “delete” to true will make the forwarder delete files deleted on the LAN filestorage on the
WAN filestorage as well. If “export” is true and “delete” is true then the WAN filestorage will be a replica of
the LAN filestorage.

“sync_at_startup”: false Set to true to syncronize WAN fileserver during start.

Directory rules

These settings can be listed in the default section as well but if they are present in a given directory section these will
take precedence.

“max_files”: “unlimited” Default is no limit to the number of files. Otherwise the limit as a plain integer.

“include”: “.*” Default is to include everything

“exclude”: “(?!)” Default is to exclude nothing

“delete_by”: “time” Requires a positive value for “max_files”. “time” is the default which will delete files from
oldest first. “version” will delete files from lowest version first and requires a “version” regex, see below. The
third criteria would be “age” but this is not implemented yet.

“version”: “.(\d+.\d+.\d+).” Primary regex group for version matching. The regex shown above will look for the
pattern “.number.number.number.” in the filenames. It currently doesnt handle any ‘rcX/ alpha/beta” style ex-
tensions which it probably should.

“group”: None If there are more than one type of files in a directory then a plain “max_files” putting all files in the
same basket makes limited sense. It is possible to specify a list of “group” regex expressions which is used to

3.2. Rules 9

filuxe

divide similar files into specific groups. All files in a given group will then be held up against the “max_files”
limit.

Group expressions are tried in the order they are listed in the rules file and files that fails to be parsed by any
regex expressions will end up in a common group called “ungrouped” (which is probably not what was wanted).
A final group regex “(.*)” will make all otherwise unrecognized files end up in their own individual groups with
a matching filecount of 1 and they will then not be able to trigger any file deletions (which is probably not what
was wanted either).

An example with the “group” [“(.*?)\:\d+.\d+.\d+\:(.*)”] containing a single regex:

Files Internal group key
a:1.1.1:anytrack:anyarch:unknown.zip a:anytrack:anyarch:unknown:zip
a:1.1.2:anytrack:anyarch:unknown.zip a:anytrack:anyarch:unknown:zip
a:1.1.3:anytrack:anyarch:unknown.zip a:anytrack:anyarch:unknown:zip
b:1.1.3:anytrack:anyarch:unknown.zip b:anytrack:anyarch:unknown:zip

So if “max_files” is 1 and files are deleted by version “\:(\d+.\d+.\d+)\:” then the remaining files will be (*)

a:1.1.3:anytrack:anyarch:unknown.zip
b:1.1.3:anytrack:anyarch:unknown.zip

(*) at least in theory.

10 Chapter 3. Forwarder

CHAPTER 4

Web server

It is the same webserver application that is used for both LAN and WAN and each domain will provide an individual
configuration file to its webserver instance. The webserver can run both HTTPS and plain HTTP, see here for gener-
ating a selfsigned certificate for HTTPS. For the sake of development and testing Filuxe, the LAN is considered safe
and the LAN webserver runs with plain HTTP, while the WAN server is on the roaring internet and uses HTTPS.

Flask debugging is default off, to turn it on while developing launch the webserver as

FLASK_DEBUG=1 ./filuxe_server.py

4.1 Write access

The WAN webserver requires a key for operations that modifies the filestorage. The idea beeing that the
clients/products on the WAN that are otherwise able to access the webserver for downloading files wont be at risk
for exposing write access to the webserver in case they get compromised. The forwarder service script operating from
the LAN will be the only one who need to know the key for the WAN server and the LAN server runs without the key.
The key can be found as “write_key” in the WAN server and the forwarder configuration files and should obviously
be changed to something more exotic that the default key “devel”.

4.2 Authentication

As a proof of concept the route ‘/’ which is serving a static HTML page can be password protected if a username and
a password is specified in the configuration file. Besides that this topic is just left as is for another day. There are (at
least) two usecases that are in faviour of password protected access. The first is in case not a file but rather a URL to
the WAN server is sent around the world. It will just appear to be not-very-professional if a file can be downloaded
without the need for any credentials. The second usecase could be to protect against denial of service attacks where
the server is flooded with a gazillion downloads. See also Flask basic HTTP AUTH

11

https://flask-httpauth.readthedocs.io/en/latest/

filuxe

4.3 Tips and tricks

When one or both of the LAN and WAN servers are just plainly refusing to talk nicely with e.g. the filuxe.py script
then curl can be used to check if the servers are reachable and working as intended. The servers have a default route
printing a single HTML text and this will be used to detect a working server. The curl commands below are assumed
to be executed from the LAN.

LAN, HTTP:

curl -v http://localhost:8000

The last part of the output is the HTML output from the server and it should read “filuxe_server_LAN”.

WAN, HTTPS:

curl --cacert certificates/cert.pem.devel -v https://<server>:9000 --insecure -u
→˓name:pwd

After a lot of SSL goblidigook the last HTML part should now contain “filuxe_server_WAN”.

12 Chapter 4. Web server

CHAPTER 5

Web server direct HTTP

Rather than using filuxe.py to interact with the LAN webserver, you can use curl and wget for direct HTTP(S) access
instead. Since the python script will follow the server script in case of breaking changes, filuxe.py will always be the
safest bet for the job of adding and deleting files from the LAN webserver filestorage.

And the mandatory warning: never trust anything you download from the WAN webserver, HTTPS or not. It should
be used with end to end encrypted files only. You would never ever work with plain zip files in real life as the examples
on this page appears to be doing.

5.1 Upload file

Since the webservers on the LAN and WAN are exactly the same the upload can be used to with the WAN server just
as well as the LAN server. That would obviously shortcircuit most of whatever filuxe does and render filuxe itself kind
of moot. At time of this writing the commands upload and delete require a key for the server to accept them. This
increases the security by approximately nothing, at least when running plain http.

curl <host>/upload/<dest> -H "Content-Type:application/octet-stream" -H "key: secret_
→˓write_key" --data-binary @<src>

5.2 Get list of files

curl -s <LAN host>/filelist/

{
"filelist": {
".": {

"here_is_a_file.zip": {
"size": 12,
"time": 1640218563.1022844

},

(continues on next page)

13

filuxe

(continued from previous page)

"here_is_another_file.zip": {
"size": 56,
"time": 1640218582.7589521

}
}

},
"info": {
"dirs": 1,
"fileroot": "test/filestorage_lan/",
"files": 2

}
}

Alternatively “wget -A zip localhost:8000/files -O filelist”

5.3 Download file

This would be one way for products to download files from the WAN web server.

wget <host>/download/test.zip
...
2020-05-18 00:41:48 (560 KB/s) - 'test.zip' saved [11/11]

For self signed SSL certificates add ‘–no-check-certificate’.

14 Chapter 5. Web server direct HTTP

CHAPTER 6

Keys and certificates

Self signed certificates for WAN SSL (HTTPS):

openssl req -x509 -newkey rsa:4096 -nodes -out cert.pem.devel -keyout key.pem.devel -
→˓days 365

Accept everything except setting common name to the WAN hostname (or localhost for testing locally). The above line
will give “Certificate for localhost has no subjectAltName” warnings from urllib3, which for now are simply silenced.
Since the warning is for real the fix is to generate a certificate with a subjectAltName which is pending. . .

For a minimum amount of fuzz then manually make a directory called ‘certificates’ and run the openssl command
from there. All templates and examples expects it to be this way.

The same certificate will have to be generated (or exist) on both the LAN server (to be used by the forwarder) and the
WAN server (to be used by the WAN server itself).

15

filuxe

16 Chapter 6. Keys and certificates

CHAPTER 7

Filebrowser

A very nice fullblown webbased filebrowser can be found on github here. Its a standalone executable that can be
launched on any server hosting a filestorage. It works like a charm and it would be a petty not to recommend it here.

Image captured from the project page at github.

17

https://github.com/filebrowser/filebrowser

filuxe

18 Chapter 7. Filebrowser

CHAPTER 8

Installing

8.1 Dependencies

A couple of python libraries are required, see ./requirements.txt.

Filuxe has been written on an Arch system with all python dependencies installed as native packages.

Be warned that bringing Filuxe up on e.g. an older Ubuntu with stale python dependencies might be a little challenging.

8.2 Reading

Certificates 101 for localhost by lets encrypt

Certificates 101 for flask

8.3 Credits

Definitely picked up more nice stuff made by others than listed here, but at least there was an attempt:

Chunked file upload with requests see https://gist.github.com/nbari/7335384

Chunked flask file download see https://stackoverflow.com/a/57236538

19

https://letsencrypt.org/docs/certificates-for-localhost/
https://blog.miguelgrinberg.com/post/running-your-flask-application-over-https
https://gist.github.com/nbari/7335384
https://stackoverflow.com/a/57236538

filuxe

20 Chapter 8. Installing

CHAPTER 9

Deployment

Since the state of the filuxe project is currently play-along-for-fun talking about deployment might be a little preten-
tious. But still it makes sense to have a page focusing on what needs to be done when filuxe is installed outside a
developer pc.

9.1 LAN Webserver

The default LAN webserver is completely open. If that doesn’t sound right then make one or more of the following
changes in the configuration file:

• make “username” and “password” entries (still just for basic auth).

• make the server run HTTPS by supplying it with a “lan_certificate” entry.

• add a “write_key” needed for operations modifying the LAN filestorage

If about to add everything in then consider to base the LAN configuration file on the WAN configuration file since it
uses all of the above.

Change “lan_host” from “localhost” to “0.0.0.0” to make the server listen to all adresses.

9.2 WAN Webserver

Change the “username”, “password” and “write_key” entries to something different from the defaults.

9.3 Certificates

If self signing SSL certificates for HTTPS then remember to re-run openssl whenever the host is changed.

21

filuxe

9.4 Others

Change any systemd service scripts to be owned and writable by root only.

The rest of filuxe is running as a plain user, including the configuration files, which is rather unambitious. This is just
how it is currently.

22 Chapter 9. Deployment

CHAPTER 10

Filuxe

Filuxe is hosted at github. Please have a look at the readme there for a brief overview.

23

https://github.com/bjerrep/filuxe

	A quick spin
	LAN Webserver
	WAN Server
	LAN Forwarder
	Buildserver

	Filuxe script
	Forwarder
	Config
	Rules

	Web server
	Write access
	Authentication
	Tips and tricks

	Web server direct HTTP
	Upload file
	Get list of files
	Download file

	Keys and certificates
	Filebrowser
	Installing
	Dependencies
	Reading
	Credits

	Deployment
	LAN Webserver
	WAN Webserver
	Certificates
	Others

	Filuxe

